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and (+) DICTYOPTBRENE C' BYCHIRALITYTRANSFER OF OPTICALLY ACTIVE 

ALLYLIC BENZOATE WITH PALLADIUM (0) CATALYST. 
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Abstract : The first enantioselective syntheses of (+) dictyopterene A 1 and 
(+)dictyopterene C' were reported.The key reaction was based on palladium p&ted 
cyclisation of chiral allylic benzoate 5 with transfer of chirality (anti attack of the 
palladium with respect to the leaving group) to give optically active vinylcyclopropane 7 
with (R) ccnfiguration which contains proper functionality for further elaboration intoi - 
and 3 - 

Dictyopterene A (+)-(R,R)-trans-l-(E-hex-l'enyl)-2-vinylcyclopropane 1 
Dictyopterene B(2) and Dictopterene C'(-)-(R)-6 butylcyclohepta-1,4-diene 2 have been - 

isolated by R.E Moore frQn Hawaian Seaweed belonging to genus dictyopteris '. These 
2 canpounds exhibit remarkable physiological activities . 

1 3 - 4 _ 

Previous synthetic approaches to 1 and 2 have involved functionalization of - - 
cyclopropane dicarbaldehyde3 using a Wittig reaction. A recent and efficient 

stereoselective synthesis of dictyopterene B? has been developed4 . No enantioselective 
synthesis of natural (+) dictyopterene A 1 and dictyopterene C' 3 have been so far 
described. 

- - 

In this paper we report the firstenantioselective syntheses of(+) dictyopterene A5 

2 and (+) dictyopterene C15. The strategy is outlined in Scheme I. We used the palladium 

prcPnoted SN'2 cyclization of functionalized allylic substrates> into cyclopropane? by the 

method developed in our laboratory6 . 
The reactions of allylic derivatives have been investigated formanyyears 'mainly in 

terms of stereochemistry. The palladium8 catalyzed reaction would be valuable 

tranfer g 

in the 

of C-0 chirality of 5 to the newly formed C-C bond in the vinylic cyclopropane 7. 
The success of this cyclisati& required the functionalized chiralallylic benzoate 5wiih 

(S) configuration 16(Scheme I). This strategy involves the following steps : (T) the 
palladia attacks the double bond of the allylic substrate opposite to the leaving benzoate 
group, with formation of chiral palladilrm species 6 (ii)The nucleophile attacks from the - 
face of the n3 ally1 opposite to the palladium'. The process allows a net SYN, SN'2 
replacement of the benzoate by the C-C bond in the cyclopropane 7. - 
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Scheme I 

OCOR 
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5 

(R) - (E) 

The key functionalized allylic benmate? is readily prepared in a few steps (a)~ 

= + 9.37' (C = 2.86 in ether) with 85% e/e ,fran ccmnercially available" trimethyl silyl 
acetylene? (Scheme II). 

Lithiation of 8 with bulylithium in ether -2O"C, transmatallationll with mnganous 
iodide, followed by Treatment with pentanoyl chloride leads to the silylated ketone 2. 

Reduction of 9 according to the Midland procedure l2 with (S) Alpine Borane l3 gave the 
allylic alcoha 10 with (S) configuration (a)~= - 12.03" ( C=3.2 inether). Removal of the 
silyl group in- Jj is accanplished with tetrabutylamonium fluoride in THF and 

gave(S)hept-1-yn_301(85%ee):(a)c= -16.15'(c=3.3 in dioxanne (litt l2 ( ~1) 25~ max= -19' 
(C-3.3 in dioxanne) . This alcohol is readily converted (ter-butyldimsthylchlorosilane, 
imidazole, CMF, 25") into its ter butyldimethylsilyl ether ( Cr)D'-35' (C=3.32 in ether) . 
The hydroxymethylation is accanmplished by treatment of the protected chiraletherwith one 
equivalent of ethyl magnesium bmnide and gazeous formaldehyde with produced s(ci) 
=-38.35" (C = 3.17 inether) Schema II. 

Scheme II 
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11 R'=tBuMe2Si R=H 14 - - 
12 R'=tBuMe2Si R=COCH3 - 

c1 13 R'=H - R=COCH3 

(a) Buli (ether -2O"C),thenMn I2 (l.leq) ; C4HgCCCl; (b) (S) Alpine Borane, VHF, 48 

h, RT: (c) (Bu)4 N+ F-, 'IHF 1 h,Rt ; (d) tBuMe2SiC1, Imidazole, CMF,lh 25°C ; (e) 

EtMgBr,mF then H2C0,2 h,Rt : (f) AC2,C,CMAP,NEt3 inCH2C12, 2Omn, RT ; (g) (Bu)4N+F-,l'HF, 
lh 30 RT, (h) W / Lindlar /H2 /in MeOH ; (i) Ph SO2CH2C02Me ,DBU, l.leq : W(dppe)2 5%, lh 
15, 25'. 
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Acetoxylation of 11 in methylene chloride gives 12 ( a) = - 29.05"( C =3.07 in 

ether). Desilylation of 12 using (Bu)4N+F- in THF produces z,(a)D = -10.3"( C = 2.98 in 
ether). Semihydrcqenation of 12 afforded 14 (a)~= -11.26) (C = 3.06 in ether) The critical 

alkylation15 of 14 is achievedwith methyl benzenesulfonylacetate ,DHU, 5% of W (dppe)2: 
'IHF, 5mn ,25"C) and proceeded smoothly yielding tog (9)D= 0.83"(C = 3.47inether). The 

key intermediate 15 is obtained" in 23% overall yield from10 after purification by flash 
chromatography, now 15 contains the carbon skeleton for cyclopropanation reaction . 
Intramolecular pallad& cyclisation is cleanly effected from the benzoate? essentially 

as previously reported6 . It is noteworthy that the desired E stereochemistry16 of the 
double bond was obtained in the resulting cyclized product. (Scheme III). 

Final elaboration of vinylic side chain is carried out from 60/40 ratio of the 
aldehydes (a) 16+17 ( a)~ = + 60.2" (C=3 in ether) which are obtained after desulfonylation -- 
(Na/Hg,Na2HW4,RT) reductionof theesters (DIRAL) in'IHF followed by oxidation (pyridinim 
chlorochromate in CH2Cl2). 

Scheme III 

H 
C-H,. 

(R) a, Ph 'qH9 3 

4 Y 

18 

7 - 

The aldehydes 
dictyopterenes A and C' 

L ~..y ; 
(R) 3, - - 

CHO 
17 - 

g(R,R) and 17 (R,S) respectively are useful precursors of 
by Wittig reaction . It is thought thatdictyopterene C'(3) arises - .n 

from Cope rearrangent in vivo of 4 (which has not been found in the essential oil). ly. - 

Treatment of these two chiralaldehydes 16 and 17 afforded l7 the natural5 (+) dictyopterene 
A (1) (9)D = +59.75(C=O.82 in CHC13);83%<e an=he unatural (+) dictyopterenec' ~,(U)D= + 
10.2"(C=O.9 in CHCl3);85% ee. 

In sunmary we present here the first enantioselective synthesis of natural (+) 
dictyopterene Al with ccmplete chirality transfer of allylic benzoate pramoted by 
palladium (0) catalyst.Simultaneous synthesis of (+) dictyopterene C' clearly shows that 
(lR,2S) cis divinylcyclopropane 4 ( which does not occurs in nature) cannot be the 
biosynthetic intermediate of (-) sctyopterene C'(3) by thermal Cope rearrangement. From - 
this work the experimental verification of the biosynthetic hypothesis18is possible. This 
study is currently in progress. 
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